Dr. Culver

LIMNOLOGY

EEOB 655

Definition: the scientific study of the physical, chemical, and biological conditions in continental waters. It includes streams, rivers, ponds, lakes, reservoirs, estuaries, and wetlands and is closely related to oceanography. It is not limited to fresh water, since many lakes (e.g. the Great Salt Lake) are saltier than the ocean. (It is not the study of arms and legs!)

Course Description: The course provides undergraduate and graduate students an introduction to limnology, emphasizing the function of north temperate lakes and ponds, although streams and rivers are included. Lecture topics include the physics and chemistry of continental waters, an introduction to the major biotic communities, and a series of lectures on the interactions among the plants and animals, predators and prey, and the physicochemical and biotic components of aquatic systems. Laboratory exercises and field trips (3) are designed to provide a practical introduction to limnological methods. Activities include morphometry of lakes, circulation and stratification, chemical water quality analysis, identification of planktonic and benthic organisms, field sampling in lakes, ponds, and streams, and paleoecology of lakes.

Prerequisites: Students should have taken 20 hrs biological sciences and 10 hrs chemistry. A course in ecology is also recommended (e.g. Evolution, Ecology and organismal Biology EEOB 413.01). EEOB 655 is particularly suited to students wishing to concentrate in Ecology, Environmental Sciences, Marine Biology or Fisheries. It is highly recommended for students wishing to take courses at a Biological Field Station such as Stone Laboratory this summer.

Objectives:

1) Understand the major physical factors influencing the function of lakes, ponds, and streams

2) Understand the cycles of the most important chemicals influencing lake function, and the interaction between biological and chemical portions of the ecosystem using compartmental (systems) models.

3) Learn the major communities of organisms living in the various aquatic habitats, including their life cycles and roles within the ecosystem.

4) Understand how the organisms and the abiotic portions of aquatic ecosystems interact to determine ecosystem function.

5) Obtain experience reviewing the primary literature in an area of interest and integrate it into a piece of scientific writing related to the function of aquatic systems.

6) Obtain practical experience with techniques commonly used in aquatic ecology, including water quality data analysis and presentation, quantitative chemical analysis of fresh water, field collection and identification of plants and animals, etc.
EEOB 655 LIMNOLOGY Spring 2002

Week Lecture Topics Reading Assignments (W=Wetzel)(Readings in H=Hutchinson are recommended, but not required)

I. Apr 1 M Introduction; Origin of lake basins; Morphometry. W1-7,15-42; H1-194
 W Properties of water; Light and lakes. W8-14,43-69; H366-425
 F Thermal balance and stratification. W71-92; H426-540

II. Apr 8 M Movements of water. W93-128; H250-365
 W Dissolved matter_Principal ions, nutrient cycles,oxygen W151-186; H541-652
 F Inorganic carbon, pH W187-204; H653-690

II. Apr 15 M Nitrogen. Read "The Algal Bowl" by Vallentyne W205-237; H836-877
 W Phosphorus W239-288; H727-752
 F Minor ions; Sediments; redox, diss. organic carbon W289-330; H753-801

IV. Apr 22 M EXAMINATION: Over first three weeks' work W129-150; H2 226-305
 W Communities in lakes W313-358 H2 306-397
 F Algae: biological character & life cycles

V. Apr 29 M Algae: Dynamics & seasonal cycles W358-374 H2 398-489
 W Algae: Primary productivity W375-394
 F Zooplankton: Biol. character & life cycles W395-433 H2 490-724

FIELD TRIP TO LAKE ERIE May 3-5 (Required) L5 1:00 pm Fri, Ret 5:00 pm Sun

VI. May 6 M Zooplankton: Population characteristics and dynamics W433-488
 W Zooplankton: Production; Fish as plankton predators W527-600
 F Littoral Community: Larger plants/benthic animals W600-629,665-720 H3 (all!!)

VII. May 13 M EXAMINATION Over second three weeks' work W489-525, 731-783
 W Detritus chains, decomposers, microbial loop
 F Eutrophication

VIII. May 20 M Trophic dynamics W721-730
 W Fish biology
 F Fish biology

IX. May 27 M MEMORIAL DAY HOLIDAY W785-842
 W Introduced Species
 F Paleolimnology (lab too)

X. Jun 3 M Organization of aquatic communities W11:30-12:30 L5 practical; SENIORS' FINAL EXAM 1:30 PM
 W 11:30-12:30 LAB PRACTICAL; SENIORS' FINAL EXAM 1:30 PM
 R --Graduating seniors grades due 4:30 PM
 F To be Announced

FINAL EXAMINATION: Wed JUNE 12 11:30 am-1:18 pm

Grade Distribution: Midterms 30%, Term Paper 20%, Lab Reports (#1 5%, #2 5%, others total 5%), Lab Practical exam 15%, Final Examination 20%. In addition, graduate students will present a seminar Friday Night at Lake Erie.

 Course Copy: Lab & Lecture Handouts. Available at the Neil Avenue Copec for about $10.

On Reserve:
Wetzel, R. 2001. Limnology, 3d ed
 " " " " " " 1967. Volume II: Plankton
 " " " " " " Volume III: Aquatic Vascular Plants
 " " " " " " Volume IV: Benthos
Week	Laboratory Topics and Reading Assignments
I. Morphometry: graphical representation of limnological data. Report due in Lab on April 10 (for W lab) or 11 (R lab) Instructions in Course Copy
II. Aquarium models of lake thermal processes. Report due in Lab on 17 or 18 April (See Course Copy)
III. Chemistry I: Oxygen, phosphorus and conductivity. (Course Copy)
IV. Chemistry II: Inorganic carbon complex: alkalinity, acidity, pH, total inorganic carbon; hardness, calcium (Course Copy)
V. Phytoplankton; Primary production (Course Copy)
VI. Zooplankton I: Field trip to West Campus Pond. (Bring old shoes and organism Identification guides)
FIELD TRIP TO LAKE ERIE (May 3-5, Required) Lv 1:00 pm Fri, Ret 5:00 pm Sun
VII. Zooplankton II: Taxonomy and Keying-out exercise
VIII. Benthos and streams: Field trip to Olentangy River or Big Darby Creek. Be prepared to wade (old tennis shoes or hip boots. Bring identification guides)
IX. Fish biology and paleolimnology
X. Laboratory practical examination (during Wed. lecture hour) & Graduating Senior Final Exam (Wed)